Enigme casse-tête

Rappel du dernier message de la page précédente :
Albedo
  • Albedo
  • Custom Cool utilisateur
Du premier énoncé de Boolemgette, on peut déduire, entre autres, que le produit n'est pas un multiple de 53, car sinon Boolemgette pourrait immédiatement le décomposer puisque 53 est premier.

Du premier énoncé de LemgBoo, on peut déduire que la somme S est <55, car sinon cette somme pourrait correspondre à 53 +n, et LemgBoo ne pourrait pas affirmer qu'il savait que Boolemgette ne pouvait pas trouver.
On peut également déduire que S n'est pas pair, car alors ça pourrait être la somme de 2 nombres premiers (pour les matheux cultivés, c'est la conjecture de Goldbach, pour les autres, vous pouvez vérifier pour tous les nombres pairs inférieurs à 55).
De plus, S-2 n'est pas premier, car le produit 2*(S-2) a une décomposition unique.
Enfin, la somme n'est pas 51, car cela pourrait correspondre à 17*34 qui n'a pas d'autre décomposition en facteurs entre 2 et 100.

Donc la somme est dans l'ensemble {11, 17, 23, 27, 29, 35, 37, 41, 47, 53}
Voir les diagonales colorées sur le tableau qui suit, les courageux pourront le tracer en entier.

Boolemgette annonce ensuite avoir trouvé. Cela signifie que le produit a plusieurs décomposition, mais une seule dont la somme soit dans cet ensemble. Cela correspond aux cases bleues.

LemgBoo annonce enfin avoir trouvé. Cela signifie que la somme qu'il connait ne correspond qu'à un seul des produits possibles (donc bleus). (Si l'on fait le tableau complet, on s'aperçoit que pour toutes les autres sommes de l'ensemble {11, 17, 23, 27, 29, 35, 37, 41, 47, 53}, il y a plusieurs cases bleues.

La somme est donc 17 et le produit 52. Les 2 nombres sont donc 4 et 13.





Alerte ! Léo s'évade ...
lemg
  • lemg
  • Vintage Ultra utilisateur
  • #1021
  • Publié par
    lemg
    le 02 Nov 2004, 16:19
AAAAAAARRRRGHHHHH !

J'ai à peu près compris, m'enfin bon, c'est bien pour se vriller les neurones ce truc.
lemgement lemg
Albedo
  • Albedo
  • Custom Cool utilisateur
lemg a écrit :
AAAAAAARRRRGHHHHH !

J'ai à peu près compris, m'enfin bon, c'est bien pour se vriller les neurones ce truc.


Dès que c'est pas des maths pures vous decrochez alors voilà j'ai pas trouvé pire, remarquez que ma charade est restée incomplète ...
Alerte ! Léo s'évade ...
WillieTheWimp
albedo a écrit :
Du premier énoncé de Boolemgette, on peut déduire, entre autres, que le produit n'est pas un multiple de 53, car sinon Boolemgette pourrait immédiatement le décomposer puisque 53 est premier.

Du premier énoncé de LemgBoo, on peut déduire que la somme S est <55, car sinon cette somme pourrait correspondre à 53 +n, et LemgBoo ne pourrait pas affirmer qu'il savait que Boolemgette ne pouvait pas trouver.
On peut également déduire que S n'est pas pair, car alors ça pourrait être la somme de 2 nombres premiers (pour les matheux cultivés, c'est la conjecture de Goldbach, pour les autres, vous pouvez vérifier pour tous les nombres pairs inférieurs à 55).
De plus, S-2 n'est pas premier, car le produit 2*(S-2) a une décomposition unique.
Enfin, la somme n'est pas 51, car cela pourrait correspondre à 17*34 qui n'a pas d'autre décomposition en facteurs entre 2 et 100.

Donc la somme est dans l'ensemble {11, 17, 23, 27, 29, 35, 37, 41, 47, 53}
Voir les diagonales colorées sur le tableau qui suit, les courageux pourront le tracer en entier.

Boolemgette annonce ensuite avoir trouvé. Cela signifie que le produit a plusieurs décomposition, mais une seule dont la somme soit dans cet ensemble. Cela correspond aux cases bleues.

LemgBoo annonce enfin avoir trouvé. Cela signifie que la somme qu'il connait ne correspond qu'à un seul des produits possibles (donc bleus). (Si l'on fait le tableau complet, on s'aperçoit que pour toutes les autres sommes de l'ensemble {11, 17, 23, 27, 29, 35, 37, 41, 47, 53}, il y a plusieurs cases bleues.

La somme est donc 17 et le produit 52. Les 2 nombres sont donc 4 et 13.







bon, je viens juste de revenir sur le topic, et qu'est ce que je vois, la conjecture de Goldbach ?? mais qu'est ce qu'elle vient faire dans une enigme, celle là ...
Comme son nom l'indique, c'est une conjecture, donc, elle a pas été demontrée. Mais bon, ca doit marcher pour les 55 premiers termes, donc, ca va ... Mais la faire intervenir dans une reponse ... et sinon, je comprends pas qu'est ce qu'il vient faire là, le 53 ...
I put a spell on you, because you're mine !
Albedo
  • Albedo
  • Custom Cool utilisateur
restons zen avec du plus classique, ( yen a encore qui cherchent pour les 2 nombres ?)

Citation:
Alors Lemg, en plus d'avoir de grandes mains a aussi et surtout de très grandes jambes, ce qui est très pratique lorsqu'il monte chez Oxo, son nouveau copain avec lequel il s'est récemment pacsé !
Mais un problème se pose, les escaliers de Oxo sont mal conçus,
lorsqu'il monte les marches, il y a toujours un problème :
- S'il les monte 2 par 2, il en reste une.
- S'il les monte 3 par 3, il en reste une.
- S'il les monte 4 par 4, il en reste une.
- S'il les monte 5 par 5, il en manque une, ce qui provoque des accidents comme la chute récente de sa gratte

Alors combien y a t il de marches ?
Alerte ! Léo s'évade ...
Ouais j'ai pas encore tout bien pigé, mais j'ai pas envie de trop chercher non plus
J-Custom Club Member

"Ah bah non on m'a dit de venir pas de venir avec des bagages, pourquoi il fallait que j'en prende ?"
WillieTheWimp
albedo a écrit :
restons zen avec du plus classique, ( yen a encore qui cherchent pour les 2 nombres ?)

Citation:
Alors Lemg, en plus d'avoir de grandes mains a aussi et surtout de très grandes jambes, ce qui est très pratique lorsqu'il monte chez Oxo, son nouveau copain avec lequel il s'est récemment pacsé !
Mais un problème se pose, les escaliers de Oxo sont mal conçus,
lorsqu'il monte les marches, il y a toujours un problème :
- S'il les monte 2 par 2, il en reste une.
- S'il les monte 3 par 3, il en reste une.
- S'il les monte 4 par 4, il en reste une.
- S'il les monte 5 par 5, il en manque une, ce qui provoque des accidents comme la chute récente de sa gratte

Alors combien y a t il de marches ?


Le nombre de marches est congru a 1 modulo 60, c'est a dire que le reste de la division du nombre de marches par 60 est 1 ..
La plus petite solution est 61 (si je me trompe pas)
c'est plutot grand comme escalier
EDIT: ah non, j'ai mal lu l'enoncé ... je refais ..
I put a spell on you, because you're mine !
y'en a 49 !!
enfin c'est une solution y'en a peut-etre d'autre je cherhce un peu plus pour voir
J-Custom Club Member

"Ah bah non on m'a dit de venir pas de venir avec des bagages, pourquoi il fallait que j'en prende ?"
Albedo
  • Albedo
  • Custom Cool utilisateur
lukehx3 a écrit :
Ouais j'ai pas encore tout bien pigé, mais j'ai pas envie de trop chercher non plus


Bon on dit que vous avez seché sur celle là , y a pas de honte à pas être une bête en math
Alerte ! Léo s'évade ...
WillieTheWimp
bon, la, je trouve 49 marches ... c'est deja plus raisonnable, pour un escalier, mais c'est pas encore ca ...
I put a spell on you, because you're mine !
Albedo
  • Albedo
  • Custom Cool utilisateur
WillieTheWimp a écrit :
bon, la, je trouve 49 marches ... c'est deja plus raisonnable, pour un escalier, mais c'est pas encore ca ...


Ok c'est la bonne réponse, que j'ai pas verifié, mais depuis ma précedente, je met mon cerveau au repos.
Alerte ! Léo s'évade ...
lemg
  • lemg
  • Vintage Ultra utilisateur
  • #1031
  • Publié par
    lemg
    le 02 Nov 2004, 16:35
Pour la charade :

Le troisième c'est IS, car le diable fait l'IS (le diable fait liesse)
lemgement lemg
albedo a écrit :
lukehx3 a écrit :
Ouais j'ai pas encore tout bien pigé, mais j'ai pas envie de trop chercher non plus


Bon on dit que vous avez seché sur celle là , y a pas de honte à pas être une bête en math


ouais bon d'accord, il est vrai que je seche un peu sur celle la, mais bon la math spé remonte a un an, et une année complète d'ecole d'ingé ca te descend ton niveau de reflexion, de concentration et de logique, tu peux pas t'imaginer
J-Custom Club Member

"Ah bah non on m'a dit de venir pas de venir avec des bagages, pourquoi il fallait que j'en prende ?"
lastaly
  • lastaly
  • Custom Supra utilisateur
    ModérateurModérateur
lukehx3 a écrit :
y'en a 49 !!
enfin c'est une solution y'en a peut-etre d'autre je cherhce un peu plus pour voir


oui, je trouve 49 aussi
C'est d'la merde !!
darrell
heu, ce qui veut dire?
RIP Dimebag Darrell...
WillieTheWimp
l'ensemble des solutions est l'ensemble des nombres congrus a 49 modulo 60 (theoreme chinois)
I put a spell on you, because you're mine !

En ce moment sur backstage...